Temperature variability is integrated by a spatially embedded decision-making center to break dormancy in Arabidopsis seeds.

نویسندگان

  • Alexander T Topham
  • Rachel E Taylor
  • Dawei Yan
  • Eiji Nambara
  • Iain G Johnston
  • George W Bassel
چکیده

Plants perceive and integrate information from the environment to time critical transitions in their life cycle. Some mechanisms underlying this quantitative signal processing have been described, whereas others await discovery. Seeds have evolved a mechanism to integrate environmental information by regulating the abundance of the antagonistically acting hormones abscisic acid (ABA) and gibberellin (GA). Here, we show that hormone metabolic interactions and their feedbacks are sufficient to create a bistable developmental fate switch in Arabidopsis seeds. A digital single-cell atlas mapping the distribution of hormone metabolic and response components revealed their enrichment within the embryonic radicle, identifying the presence of a decision-making center within dormant seeds. The responses to both GA and ABA were found to occur within distinct cell types, suggesting cross-talk occurs at the level of hormone transport between these signaling centers. We describe theoretically, and demonstrate experimentally, that this spatial separation within the decision-making center is required to process variable temperature inputs from the environment to promote the breaking of dormancy. In contrast to other noise-filtering systems, including human neurons, the functional role of this spatial embedding is to leverage variability in temperature to transduce a fate-switching signal within this biological system. Fluctuating inputs therefore act as an instructive signal for seeds, enhancing the accuracy with which plants are established in ecosystems, and distributed computation within the radicle underlies this signal integration mechanism.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nitric oxide reduces seed dormancy in Arabidopsis.

Dormancy is a property of many mature seeds, and experimentation over the past century has identified numerous chemical treatments that will reduce seed dormancy. Nitrogen-containing compounds including nitrate, nitrite, and cyanide break seed dormancy in a range of species. Experiments are described here that were carried out to further our understanding of the mechanism whereby these and othe...

متن کامل

Evaluation of different hormonal and temperature treatments on dormancy breaking of Lavender (Lavandula angustifolia) seed

Extended Abstract Introduction: Lavandula angustifolia L. is one of the most important plants belonging to Lamiaceae which has abundant use in traditional and pharmacological medicine. Lavender seed dormancy is one of the problems in producing seedlings which increases seed consumption. In this regard, an experiment was carried out to investigate different treatments for seed dormancy eliminat...

متن کامل

Secondary dormancy dynamics depends on primary dormancy status in Arabidopsis thaliana

Seed dormancy can prevent germination under unfavourable conditions that reduce the chances of seedling survival. Freshly harvested seeds often have strong primary dormancy that depends on the temperature experienced by the maternal plant and which is gradually released through afterripening. However, seeds can be induced into secondary dormancy if they experience conditions or cues of future u...

متن کامل

A role for multiple circadian clock genes in the response to signals that break seed dormancy in Arabidopsis.

Plant seeds can sense diverse environmental signals and integrate the information to regulate developmental responses, such as dormancy and germination. The circadian clock confers a growth advantage on plants and uses environmental information for entrainment. Here, we show that normal circadian clock gene function is essential for the response to dormancy-breaking signals in seeds. We show th...

متن کامل

Activation of gibberellin biosynthesis and response pathways by low temperature during imbibition of Arabidopsis thaliana seeds.

Exposure of imbibed seeds to low temperature (typically 4 degrees C) is widely used to break seed dormancy and to improve the frequency of germination. However, the mechanism by which temperature accelerates germination is largely unknown. Using DNA microarray and gas chromatography-mass spectrometry analyses, we found that a subset of gibberellin (GA) biosynthesis genes were upregulated in res...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 114 25  شماره 

صفحات  -

تاریخ انتشار 2017